Publications (Google Scholar)
2024
ICLR'24 |
3D-MoLM: Towards 3D Molecule-Text Interpretation in Language Models Sihang Li, Zhiyuan Liu, Yanchen Luo, Xiang Wang*, Xiangnan He, Kenji Kawaguchi, Tat-Seng Chua, Qi Tian |
TOIS'24 |
On the Effectiveness of Sampled Softmax Loss for Item Recommendation Jiancan Wu, Xiang Wang*, Xingyu Gao, Jiawei Chen, Hongcheng Fu, Tianyu Qiu |
TOIS'24 |
MultiCBR: Multi-view Contrastive Learning for Bundle Recommendation Yunshan Ma, Yingzhi He, Xiang Wang*, Yinwei Wei, Xiaoyu Du, Yuyangzi Fu, Tat-Seng Chua |
WWW'24 |
General Debiasing for Graph-based Collaborative Filtering via Adversarial Graph Dropout An Zhang, Wenchang Ma, Pengbo Wei, Leheng Sheng, Xiang Wang* |
WWW'24 |
EXGC: Bridging Efficiency and Explainability in Graph Condensation Junfeng Fang, Xinglin Li, Yongduo Sui, Yuan Gao, Guibin Zhang, Kun Wang, Xiang Wang*, Xiangnan He |
WWW'24 |
Invariant Graph Learning for Treatment Effect Estimation from Networked Observational Data Yongduo Sui, Caizhi Tang, Zhixuan Chu, Junfeng Fang, Yuan Gao, Qing Cui, Longfei Li, Jun Zhou, Xiang Wang* |
WWW'24 |
Graph Anomaly Detection with Bi-level Optimization Yuan Gao, Junfeng Fang, Yongduo Sui, Yangyang Li, Xiang Wang*, HuaMin Feng, Yongdong Zhang |
TOIS'24 |
Robust Collaborative Filtering to Popularity Distribution Shift An Zhang, Wenchang Ma, Jingnan Zheng, Xiang Wang*, Tat-Seng Chua |
SIGIR'24 |
On Generative Agents for Recommendation An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang*, Tat-Seng Chua |
SIGIR'24 |
Llara: Aligning Large Language Models with Sequential Recommenders Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang*, Xiangnan He |
SIGIR'24 |
Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning Yuyue Zhao, Jiancan Wu, Xiang Wang, Wei Tang, Dingxian Wang and Maarten de Rijke |
CVPR'24 |
Enhance Image Classification Via Inter-Class Image Mixup With Diffusion Model Zhicai Wang, Longhui Wei, Tan Wang, Heyu Chen, Yanbin Hao, Xiang Wang*, Xiangnan He, Qi Tian |
CVPR'24 |
LASO: Language-guided Affordance Segmentation on 3D Object Yicong Li, Na Zhao, Junbin Xiao, Chun Feng, Xiang Wang*, Tat-Seng Chua |
AAAI'24 |
Text-to-Image Generation for Abstract Concepts Jiayi Liao, Xu Chen, Qiang Fu, Lun Du, Xiangnan He, Xiang Wang, Shi Han, Dongmei Zhang |
ICDE'24 |
BSL: Understanding and Improving Softmax Loss for Recommendation Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Jizhi Zhang, Xiang Wang* |
ICDE'24 |
Masked Graph Modeling with Multi-View Contrast Yanchen Luo, Sihang Li, Yongduo Sui, Junkang Wu, Jiancan Wu, Xiang Wang* |
2023
NeurIPS'23 |
Generate What You Prefer: Reshaping Sequential Recommendation via Guided Diffusion Zhengyi Yang, Jiancan Wu, Zhicai Wang, Xiang Wang, Yancheng Yuan, Xiangnan He |
NeurIPS'23 |
Understanding Contrastive Learning via Distributionally Robust Optimization Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Xiang Wang, Xiangnan He |
NeurIPS'23 |
Empowering Collaborative Filtering with Principled Adversarial Contrastive Loss An Zhang, Leheng Sheng, Zhibo Cai, Xiang Wang, Tat-Seng Chua |
NeurIPS'23 |
Unleashing the Power of Graph Data Augmentation on Covariate Distribution Shift Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang Wang*, Xiangnan He |
NeurIPS'23 |
Evaluating Post-hoc Explanations for Graph Neural Networks via Robustness Analysis Junfeng Fang, Wei Liu, Yuan Gao, Zemin Liu, An Zhang, Xiang Wang*, Xiangnan He |
NeurIPS'23 |
Rethinking Tokenizer and Decoder in Masked Graph Modeling for Molecules Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang*, Tat-Seng Chua |
EMNLP'23 |
MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter Zhiyuan Liu, Sihang Li, Yanchen Luo, Hao Fei, Yixin Cao, Kenji Kawaguchi, Xiang Wang*, Tat-Seng Chua |
EMNLP'23 |
A Comprehensive Evaluation of Large Language Models on Legal Judgment Prediction Ruihao Shui, Yixin Cao, Xiang Wang*, Tat-Seng Chua |
EMNLP'23 |
ReLM: Leveraging Language Models for Enhanced Chemical Reaction Prediction Yaorui Shi, An Zhang, Enzhi Zhang, Zhiyuan Liu, Xiang Wang |
ICSE'23 |
Learning Graph-based Code Representations for Source-level Functional Similarity Detection Jiahao Liu, Jun Zeng, Xiang Wang*, Zhenkai Liang |
TPAMI'23 |
Transformer-Empowered Invariant Grounding for Video Question Answering Yicong Li, Xiang Wang*, Junbin Xiao, Wei Ji, Tat-Seng Chua |
KDD'23 |
Context-aware Event Forecasting via Graph Disentanglement Yunshan Ma, Chenchen Ye, Zijian Wu, Xiang Wang*, Yixin Cao, Tat-Seng Chua |
ACM MM'23 |
Redundancy-aware transformer for video question answering Yicong Li, Xun Yang, An Zhang, Chun Feng, Xiang Wang, Tat-Seng Chua |
ACM MM'23 |
Online distillation-enhanced multi-modal transformer for sequential recommendation Wei Ji, Xiangyan Liu, An Zhang, Yinwei Wei, Yongxin Ni, Xiang Wang |
KDD'23 |
Discovering Dynamic Causal Space for DAG Structure Learning Fangfu Liu, Wenchang Ma, An Zhang, Xiang Wang*, Yueqi Duan, Tat-Seng Chua |
SIGIR'23 |
Strategy-aware Bundle Recommender System Yinwei Wei, Xiaohao Liu, Yunshan Ma, Xiang Wang*, Liqiang Nie, Tat-Seng Chua |
SIGIR'23 |
A Generic Learning Framework for Sequential Recommendation with Distribution Shifts Zhengyi Yang, Xiangnan He, Jizhi Zhang, Jiancan Wu, Xin Xin, Jiawei Chen, Xiang Wang* |
WWW'23 |
Invariant Collaborative Filtering to Popularity Distribution Shift An Zhang, Jingnan Zheng, Xiang Wang*, Yancheng Yuan, Tat-Seng Chua |
WWW'23 |
Addressing Heterophily in Graph Anomaly Detection: A Perspective of Graph Spectrum Yuan Gao, Xiang Wang*, Xiangnan He, Zhenguang Liu, Huamin Feng, Yongdong Zhang |
WWW'23 |
GIF: A General Graph Unlearning Strategy via Influence Function Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang*, Xiangnan He |
ICLR'23 |
Boosting Causal Discovery via Adaptive Sample Reweighting An Zhang, Fangfu Liu, Wenchang Ma, Zhibo Cai, Xiang Wang*, Tat-Seng Chua |
ICSE'23 |
Learning Graph-based Code Representations for Source-level Functional Similarity Detection Jiahao Liu, Jun Zeng, Xiang Wang*, Zhenkai Liang |
WSDM'23 |
Cooperative Explanations of Graph Neural Networks Junfeng Fang, Xiang Wang*, An Zhang, Zemin Liu, Xiangnan He, Tat-Seng Chua |
WSDM'23 |
Alleviating Structural Distribution Shift in Graph Anomaly Detection Yuan Gao, Xiang Wang*, Xiangnan He, Zhenguang Liu, Huamin Feng, Yongdong Zhang |
TKDE'23 |
Rule-guided Counterfactual Explainable Recommendation Yinwei Wei, Xiaoyang Qu, Xiang Wang, Yunshan Ma, Liqiang Nie, Tat-Seng Chua |
TOIS'23 |
Bias and debias in recommender system: A survey and future directions Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, Xiangnan He |
TOIS'23 |
User Perception of Recommendation Explanation: Are Your Explanations What Users Need? Hongyu Lu, Weizhi Ma, Yifan Wang, Min Zhang, Xiang Wang, Yiqun Liu, Tat-Seng Chua, Shaoping Ma |
2022
NeurIPS'22 |
Incorporating Bias-aware Margins into Contrastive Loss for Collaborative Filtering. An Zhang, Wenchang Ma, Xiang Wang, Tat-Seng Chua |
ICML'22 |
Let Invariant Rationale Discovery inspire Graph Contrastive Learning. Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, Tat-Seng Chua. |
ICLR'22 |
Discovering invariant rationales for graph neural networks. YingXin Wu, Xiang Wang, An Zhang, Xiangnan He, Tat-Seng Chua. |
TPAMI'22 |
Reinforced Causal Explainer for Graph Neural Networks Xiang Wang, Yingxin Wu, An Zhang, Fuli Feng, Xiangnan He, Tat-Seng Chua |
KDD'22 |
Causal Attention for Interpretable and Generalizable Graph Classification. Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, Tat-Seng Chua. |
KDD'22 |
CrossCBR: Cross-view Contrastive Learning for Bundle Recommendation. Yunshan Ma, Yingzhi He, An Zhang, Xiang Wang, Tat-Seng Chua. |
CVPR'22 |
Invariant Grounding for Video Question Answering. Yicong Li, Xiang Wang, Junbin Xiao, Wei Ji, Tat-Seng Chua. |
CVPR'22 |
Temporal Feature Alignment and Mutual Information Maximization for Video-Based Human Pose Estimation. Zhenguang Liu, Runyang Feng, Haoming Chen, Shuang Wu, Yixing Gao, Yunjun Gao, Xiang Wang. |
IEEE S&P'22 |
Shadewatcher: Recommendation-guided Cyber Threat Analysis Using System Audit Records. Jun Zeng, Xiang Wang, Jiahao Liu, Yinfang Chen, Zhenkai Liang, Tat-Seng Chua, Zheng Leong Chua. |
ISSTA'22 |
TELL: Log Level Suggestions via Modeling Multi-level Code Block Information. Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, Zhenkai Liang. |
TOIS'22 |
Time-aware Path Reasoning on Knowledge Graph for Recommendation. Yuyue Zhao, Xiang Wang, Jiawei Chen, Wei Tang, Yashen Wang, Xiangnan He, Haiyong Xie. |
WWW'22 |
Cross Pairwise Ranking for Unbiased Item Recommendation. Qi Wan, Xiangnan He, Xiang Wang, Jiancan Wu, Wei Guo, Ruiming Tang. |
TKDE'22 |
Causal Inference for Knowledge Graph based Recommendation. Yinwei Wei, Xiang Wang, Liqiang Nie, Shaoyu Li, Tat-Seng Chua. |
TKDE'22 |
A survey on neural recommendation: From collaborative filtering to content and context enriched recommendation. Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, Meng Wang. |
IJCAI'22 |
Copy Motion From One to Another: Fake Motion Video Generation. Zhenguang Liu, Sifan Wu, Chejian Xu, Xiang Wang, Lei Zhu, Shuang Wu, Fuli Feng. |
2021
NeurIPS'21 |
Towards Multi-Grained Explainability for Graph Neural Networks Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, Tat-Seng Chua |
WWW'21 |
Learning Intents behind Interactions with Knowledge Graph for Recommendation Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He, Tat-Seng Chua |
SIGIR'21 |
Self-supervised graph learning for recommendation. Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, Xing Xie. |
ACM MM'21 |
Contrastive learning for cold-start recommendation. Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, Tat-Seng Chua. |
TMM'21 |
Hierarchical user intent graph network for multimedia recommendation. Yinwei Wei, Xiang Wang, Xiangnan He, Liqiang Nie, Yong Rui, Tat-Seng Chua. |
2020
WWW'20 |
Reinforced Negative Sampling over Knowledge Graph for Recommendation Xiang Wang, Yaokun Xu, Xiangnan He, Yinxin Cao, Meng Wang, Tat-Seng Chua. |
SIGIR'20 |
Disentangled Graph Collaborative Filtering Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, Tat-Seng Chua. |
SIGIR'20 |
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, Meng Wang. |
SIGIR'20 |
Hierarchical Fashion Graph Network for Personalised Outfit Recommendation. Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, Tat-Seng Chua. |
ACM MM'20 |
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback. Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He, Tat-Seng Chua. |
ACM MM'20 |
How to Learn Item Representation for Cold-Start Multimedia Recommendation?. Xiaoyu Du, Xiang Wang, Xiangnan He, Zechao Li, Jinhui Tang, Tat-Seng Chua. |
AAAI'20 |
Zero-Shot Ingredient Recognition by Multi-Relational Graph Convolutional Network. Jingjing Chen, Liangming Pan, Zhipeng Wei, Xiang Wang, Chong-Wah Ngo, Tat-Seng Chua. |
IJCAI'20 |
Smart Contract Vulnerability Detection Using Graph Neural Networks. Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, Qinming He. |
IJCAI'20 |
Bilinear Graph Neural Network with Neighbor Interactions. Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, Yongdong Zhang. |
KDD'20 |
Interactive Path Reasoning on Graph for Conversational Recommendation. Wenqiang Lei, Gangyi Zhang, Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, Tat-Seng Chua. |
IPM'20 |
MGAT: Multimodal Graph Attention Network for Recommendation. Zhulin Tao, Yinwei Wei, Xiang Wang, Xiangnan He, Xianglin Huang, Tat-Seng Chua. |
IPM'20 |
HoAFM: A High-order Attentive Factorization Machine for CTR Prediction. Zhulin Tao, Xiang Wang, Xiangnan He, Xianglin Huang, Tat-Seng Chua. |
2019
KDD'19 |
KGAT: Knowledge Graph Attention Network for Recommendation Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, Tat-Seng Chua. |
SIGIR'19 |
Neural Graph Collaborative Filtering Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, Tat-Seng Chua. |
SIGIR'19 |
Interpretable Fashion Matching with Rich Attributes. Xun Yang, Xiangnan He, Xiang Wang, Yunshan Ma, Fuli Feng, Meng Wang, Tat-Seng Chua. |
AAAI'19 |
Explainable Reasoning over Knowledge Graph Paths for Recommendation. Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, Tat-Seng Chua. |
WWW'19 |
Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preference. Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, Tat-Seng Chua. |
TIP'19 |
Neural multimodal cooperative learning toward micro-video understanding. Yinwei Wei, Xiang Wang, Weili Guan, Liqiang Nie, Zhouchen Lin, Baoquan Chen. |
ACM MM'19 |
MMGCN: Multi-modal graph convolution network for personalized recommendation of micro-video. Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He, Richang Hong, Tat-Seng Chua. |
TOIS'19 |
Temporal Relational Ranking for Stock Prediction. Fuli Feng, Xiangnan He, Xiang Wang, Cheng Luo, Yiqun Liu, Tat-Seng Chua. |
TOIS'19 |
Deep Item-based Collaborative Filtering for Top-N Recommendation. Feng Xue, Xiangnan He, Xiang Wang, Jiandong Xu, Kai Liu, Richang Hong. |
2018
WWW'18 |
TEM: Tree-enhanced Embedding Model for Explainable Recommendation. Xiang Wang, Xiangnan He, Fuli Feng, Liqiang Nie, Tat-Seng Chua. |
TIP'18 |
Online data organizer: micro-video categorization by structure-guided multimodal dictionary learning. Meng Liu, Liqiang Nie, Xiang Wang, Qi Tian, Baoquan Chen. |
ACM MM'18 |
Crossmodal Moment Localization in Videos. Meng Liu, Xiang Wang, Liqiang Nie, Qi Tian, Baoquan Chen, Tat-Seng Chua. |
SIGIR'18 |
Attentive Moment Retrieval in Videos. Meng Liu, Xiang Wang, Liqiang Nie, Xiangnan He, Baoquan Chen, Tat-Seng Chua. |
SIGIR'18 |
A Personal Privacy Preserving Framework. Xuemeng Song, Xiang Wang, Liqiang Nie, Xiangnan He, Zhumin Chen, Wei Liu. |
IJCAI'18 |
Outer Product-based Neural Collaborative Filtering. Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, Tat-Seng Chua. |
2017
SIGIR'17 |
Item Silk Road: Recommending Items from Information Domains to Social Users. Xiang Wang, Xiangnan He, Liqiang Nie, Tat-Seng Chua. |
SIGIR'17 |
Computational Social Indicators: A Case Study of Chinese University Ranking. Fuli Feng, Liqiang Nie, Xiang Wang, Richang Hong, Tat-Seng Chua. |
TOIS'17 |
Unifying Virtual and Physical Worlds: Learning towards Local and Global Consistency. Xiang Wang, Liqiang Nie, Xuemeng Song, Dongxiang Zhang, Tat-Seng Chua. |
ACM MM'17 |
Enhancing Micro-video Understanding by Harnessing External Sounds. Liqiang Nie, Xiang Wang, Jianglong Zhang, Xiangnan He, Hanwang Zhang, Richang Hong, Qi Tian. |
TKDE'17 |
Data-Driven Answer Selection in Community QA Systems. Liqiang Nie, Xiaochi Wei, Dongxiang Zhang, Xiang Wang, Zhipeng Gao, Yi Yang. |
2016
ACM MM'16 |
Shorter-is-Better: Venue Category Estimation from Micro-Video. Jianglong Zhang, Liqiang Nie, Xiang Wang, Xiangnan He, Xianglin Huang, Tat-Seng Chua. |
ACM MM'16 |
Micro Tells Macro: Predicting the Popularity of Micro-Videos via a Transductive Model. Jingyuan Chen, Xuemeng Song, Liqiang Nie, Xiang Wang, Hanwang Zhang, Tat-Seng Chua. |